QAOA for Max-Cut on a triangle graph

12e14a3b-9ed1-4ad6-a35e-b1f98a951525
4.0
Description

This quantum circuit implements the Quantum Approximate Optimization Algorithm (QAOA) for solving the Max-Cut problem on a triangle graph.

Qiskit Circuit Code
Python
```python
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter

# Create a circuit with 3 qubits and 3 classical bits
qc = QuantumCircuit(3, 3)

# Parameters for QAOA
gamma = Parameter('γ')
beta = Parameter('β')

# Initial layer of Hadamard gates
qc.h([0, 1, 2])

# Problem unitary for Max-Cut on a triangle graph
qc.cx(0, 1)
qc.rzz(2 * gamma, 0, 1)
qc.cx(0, 1)

qc.cx(1, 2)
qc.rzz(2 * gamma, 1, 2)
qc.cx(1, 2)

qc.cx(0, 2)
qc.rzz(2 * gamma, 0, 2)
qc.cx(0, 2)

# Mixer unitary
qc.rx(2 * beta, [0, 1, 2])

# Measurement
qc.measure([0, 1, 2], [0, 1, 2])
```
Quantum Execution Results
ibm_brisbane
N/A
N/A shots
Execution Notice:

The number of values (0) does not match the number of parameters (2) for the circuit. Note that if you want to run a single pub, you need to wrap it with `[]` like `sampler.run([(circuit, param_values)])` instead of `sampler.run((circuit, param_values))`.

Raw Result Data
Download Results
Back to Home